Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
2.
Exp Mol Med ; 54(4): 493-502, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379934

RESUMO

Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) have been reported to exhibit immature embryonic or fetal cardiomyocyte-like phenotypes. To enhance the maturation of hESC-CMs, we identified a natural steroidal alkaloid, tomatidine, as a new substance that stimulates the maturation of hESC-CMs. Treatment of human embryonic stem cells with tomatidine during cardiomyocyte differentiation stimulated the expression of several cardiomyocyte-specific markers and increased the density of T-tubules. Furthermore, tomatidine treatment augmented the number and size of mitochondria and enhanced the formation of mitochondrial lamellar cristae. Tomatidine treatment stimulated mitochondrial functions, including mitochondrial membrane potential, oxidative phosphorylation, and ATP production, in hESC-CMs. Tomatidine-treated hESC-CMs were more sensitive to doxorubicin-induced cardiotoxicity than the control cells. In conclusion, the present study suggests that tomatidine promotes the differentiation of stem cells to adult cardiomyocytes by accelerating mitochondrial biogenesis and maturation and that tomatidine-treated mature hESC-CMs can be used for cardiotoxicity screening and cardiac disease modeling.


Assuntos
Células-Tronco Embrionárias Humanas , Cardiotoxicidade/etiologia , Diferenciação Celular , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Mitocôndrias , Miócitos Cardíacos/metabolismo , Tomatina/análogos & derivados
3.
Eur Heart J ; 43(20): 1973-1989, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190817

RESUMO

AIMS: Cereblon (CRBN) is a substrate receptor of the E3 ubiquitin ligase complex that was reported to target ion channel proteins. L-type voltage-dependent Ca2+ channel (LTCC) density and dysfunction is a critical player in heart failure with reduced ejection fraction (HFrEF). However, the underlying cellular mechanisms by which CRBN regulates LTCC subtype Cav1.2α during cardiac dysfunction remain unclear. Here, we explored the role of CRBN in HFrEF by investigating the direct regulatory role of CRBN in Cav1.2α activity and examining how it can serve as a target to address myocardial dysfunction. METHODS AND RESULTS: Cardiac tissues from HFrEF patients exhibited increased levels of CRBN compared with controls. In vivo and ex vivo studies demonstrated that whole-body CRBN knockout (CRBN-/-) and cardiac-specific knockout mice (Crbnfl/fl/Myh6Cre+) exhibited enhanced cardiac contractility with increased LTCC current (ICaL) compared with their respective controls, which was modulated by the direct interaction of CRBN with Cav1.2α. Mechanistically, the Lon domain of CRBN directly interacted with the N-terminal of Cav1.2α. Increasing CRBN levels enhanced the ubiquitination and proteasomal degradation of Cav1.2α and decreased ICaL. In contrast, genetic or pharmacological depletion of CRBN via TD-165, a novel PROTAC-based CRBN degrader, increased surface expression of Cav1.2α and enhanced ICaL. Low CRBN levels protected the heart against cardiomyopathy in vivo. CONCLUSION: Cereblon selectively degrades Cav1.2α, which in turn facilitates cardiac dysfunction. A targeted approach or an efficient method of reducing CRBN levels could serve as a promising strategy for HFrEF therapeutics.


Assuntos
Insuficiência Cardíaca , Ubiquitina-Proteína Ligases , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Humanos , Camundongos , Volume Sistólico , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
4.
J Gen Physiol ; 154(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35099502

RESUMO

Despite distinctive functional and anatomic differences, a precise understanding of the cardiac interventricular differences in excitation-contraction (E-C) coupling mechanisms is still lacking. Here, we directly compared rat right and left cardiomyocytes (RVCM and LVCM). Whole-cell patch clamp, the IonOptix system, and fura-2 fluorimetry were used to measure electrical properties (action potential and ionic currents), single-cell contractility, and cytosolic Ca2+ ([Ca2+]i), respectively. Myofilament proteins were analyzed by immunoblotting. RVCM showed significantly shorter action potential duration (APD) and higher density of transient outward K+ current (Ito). However, the triggered [Ca2+]i change (Ca2+ transient) was not different, while the decay rate of the Ca2+ transient was slower in RVCM. Although the relaxation speed was also slower, the sarcomere shortening amplitude (ΔSL) was smaller in RVCM. SERCA activity was ∼60% lower in RVCM, which is partly responsible for the slower decay of the Ca2+ transient. Immunoblot analysis revealed lower expression of the cardiac troponin complex (cTn) in RVCM, implying a smaller Ca2+ buffering capacity (κS), which was proved by in situ analysis. The introduction of these new levels of cTn, Ito, and SERCA into a mathematical model of rat LVCM reproduced the similar Ca2+ transient, slower Ca2+ decay, shorter APD, and smaller ΔSL of RVCM. Taken together, these data show reduced expression of cTn proteins in the RVCM, which provides an explanation for the interventricular difference in the E-C coupling kinetics.


Assuntos
Ventrículos do Coração , Contração Miocárdica , Potenciais de Ação , Animais , Cálcio/metabolismo , Ventrículos do Coração/metabolismo , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Ratos , Troponina/metabolismo
5.
Life Sci Alliance ; 3(9)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32699151

RESUMO

Diabetic cardiomyopathy (DCM) is a major cause of mortality/morbidity in diabetes mellitus patients. Although tetrahydrobiopterin (BH4) shows therapeutic potential as an endogenous cardiovascular target, its effect on myocardial cells and mitochondria in DCM and the underlying mechanisms remain unknown. Here, we determined the involvement of BH4 deficiency in DCM and the therapeutic potential of BH4 supplementation in a rodent DCM model. We observed a decreased BH4:total biopterin ratio in heart and mitochondria accompanied by cardiac remodeling, lower cardiac contractility, and mitochondrial dysfunction. Prolonged BH4 supplementation improved cardiac function, corrected morphological abnormalities in cardiac muscle, and increased mitochondrial activity. Proteomics analysis revealed oxidative phosphorylation (OXPHOS) as the BH4-targeted biological pathway in diabetic hearts as well as BH4-mediated rescue of down-regulated peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC-1α) signaling as a key modulator of OXPHOS and mitochondrial biogenesis. Mechanistically, BH4 bound to calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) and activated downstream AMP-activated protein kinase/cAMP response element binding protein/PGC-1α signaling to rescue mitochondrial and cardiac dysfunction in DCM. These results suggest BH4 as a novel endogenous activator of CaMKK2.


Assuntos
/análogos & derivados , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/genética , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Diabetes Mellitus/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Coração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Contração Miocárdica , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Biogênese de Organelas , Fosforilação Oxidativa , Ratos , Ratos Long-Evans , Transdução de Sinais/fisiologia
6.
Adv Physiol Educ ; 44(3): 323-333, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32568002

RESUMO

To understand the excitation-contraction (E-C) coupling of cardiomyocytes, including the electrophysiological mechanism of their characteristically long action potential duration, is one of the major learning goals in medical physiology. However, the integrative interpretation of the responses occurring during the contraction-relaxation cycle is challenging due to the dynamic interaction of underlying factors. Starting in 2017, we adopted the mathematical computer simulation model of human ventricular myocyte (Cardiac E-C_Sim), hypothesizing that this educational technology may facilitate students' learning of cardiac physiology. Here, we describe the overall process for the educational application of Cardiac E-C_Sim in the human physiology practicum of Seoul National University College of Medicine. We also report the results from questionnaires covering detailed assessment of the practicum class. The analysis of results and feedback opinions enabled us to understand how the students had approached the problem-solving process. As a whole, the students could better accomplish the learning goals using Cardiac E-C_Sim, followed by constructive discussions on the complex and dynamic mechanisms of cardiac E-C coupling. We suggest that the combined approach of lecture-based teaching and computer simulations guided by a manual containing clinical context would be broadly applicable in physiology education.


Assuntos
Contração Miocárdica , Miócitos Cardíacos , Potenciais de Ação , Simulação por Computador , Humanos , Aprendizagem , Ensino
7.
Pflugers Arch ; 472(2): 259-269, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025886

RESUMO

All living beings on earth are influenced by the circadian rhythm, the rising and the setting of the sun. The ubiquitous effect of exercise is widely believed to maximize health benefits but has not been formally investigated for cardiac responses in the exercise-induced circadian rhythms. We hypothesized that the exercise-related proteome is differentially influenced by circadian rhythm and analyzed the differences between the effects of morning and evening exercise. Twenty-four Sprague-Dawley rats were randomly divided into four groups (n = 6 per group): morning control, morning exercise, evening control, and evening exercise groups. The exercise groups were subjected to 12-week treadmill exercise (5 days/week) performed either during daytime or nighttime. After 12 weeks, the physiological characteristics (e.g., body weight, heart weight, visceral fat, and blood metabolites), cardiovascular capacity (ejection fraction (%) and fractional shortening (%)), circadian gene expression levels (clock, ball1, per1, per2, cry1, and cry2), and the proteomic data were obtained and subjected to univariate and multivariate analysis. The mRNA levels of per1 and cry2 increased in the evening group compared with those in the morning group. We also found that per2 decreased and cry2 increased in the evening exercise groups. The evening exercise groups showed more decreased triacylglycerides and increased blood insulin levels than the morning exercise group. The principal component analysis, partial least squares discriminant analysis, and orthogonal partial least squares discriminant analysis indicated that the circadian rhythm differently influenced the protein networks of the exercise groups. In the morning exercise group, the transcription-translation feedback loop (TTFL) (clock, per1, per2, cry1, and cry2) formed a protein-protein interaction network with Nme2, Hint1, Ddt, Ndufb8, Ldha, and Eef1a2. In contrast, the TTFL group appeared close to Maoa, Hist2h4, and Macrod1 in the evening exercise group. Interestingly, the evening exercise group decreased the mRNA level of per2 but not per1. Per1 and Per2 are known to transport Cry1 and Cry2 into the nucleus. Taken together, we summarized the characteristics of enriched proteins in the aspect of their molecular function, cellular component, and biological process. Our results might provide a better understanding of the circadian effect on exercise-related proteins.


Assuntos
Adaptação Fisiológica , Ritmo Circadiano , Miocárdio/metabolismo , Condicionamento Físico Animal , Proteoma/metabolismo , Animais , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Coração/fisiologia , Masculino , Mapas de Interação de Proteínas , Proteoma/genética , Ratos , Ratos Sprague-Dawley
8.
Int J Mol Sci ; 20(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842522

RESUMO

Diabetes mellitus is associated with cardiovascular, ophthalmic, and renal comorbidities. Among these, diabetic cardiomyopathy (DCM) causes the most severe symptoms and is considered to be a major health problem worldwide. Exercise is widely known as an effective strategy for the prevention and treatment of many chronic diseases. Importantly, the onset of complications arising due to diabetes can be delayed or even prevented by exercise. Regular exercise is reported to have positive effects on diabetes mellitus and the development of DCM. The protective effects of exercise include prevention of cardiac apoptosis, fibrosis, oxidative stress, and microvascular diseases, as well as improvement in cardiac mitochondrial function and calcium regulation. This review summarizes the recent scientific findings to describe the potential mechanisms by which exercise may prevent DCM and heart failure.


Assuntos
Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/terapia , Terapia por Exercício , Exercício Físico , Animais , Biomarcadores , Estudos Clínicos como Assunto , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Terapia por Exercício/métodos , Humanos , Miocárdio/metabolismo , Estresse Oxidativo
9.
Sci Rep ; 9(1): 12997, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506521

RESUMO

Pathogenic variants in the human SCN5A gene encoding the a-subunit of the principle Na+ channel (Nav1.5) are associated with long QT syndrome (LQTS) 3. LQT3 patients display variable responses to Na+ channel blockers demanding for the development of variant-specific therapeutic strategies. Here we performed a combined electrophysiological analysis with in silico simulation of variant channel to elucidate mechanisms of therapeutic responsiveness. We identified a novel SCN5A variant (A1656D) in a LQTS patient with a distinct response to mexiletine resulting in suppression of non-sustained ventricular tachycardia and manifestation of premature atrial contraction. Patch clamp analysis revealed that A1656D variant exerted gain-of-function effects including hyperpolarizing shift of the voltage-dependence of activation, depolarizing shift in the voltage-dependence of inactivation, and slowing of fast inactivation. Among ranolazine, flecainide, and mexiletine, only mexiletine restored inactivation kinetics of A1656D currents. In silico simulation to assess the effect of A1656D variant on ventricular cardiac cell excitation predicted a prolonged action potential which is consistent with the prolonged QT and non-sustained ventricular tachycardia of the patient. It also predicted that only mexiletine suppressed the prolonged action potential of human ventricular myocytes expressing A1656D. These data elucidate the underlying mechanism of the distinct response to mexiletine in this patient.


Assuntos
Potenciais de Ação , Antiarrítmicos/uso terapêutico , Síndrome do QT Longo/patologia , Mexiletina/uso terapêutico , Mutação , Miócitos Cardíacos/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Adulto , Feminino , Humanos , Lactente , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/genética , Masculino , Prognóstico
10.
Biophys J ; 117(4): 767-779, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31400920

RESUMO

Pacemaker depolarization in interstitial cells of Cajal (ICCs) is believed to be induced by Ca2+ transients and activation of anoctamin-1 (Ano1) channels in the plasma membrane. However, block of store-operated calcium entry (SOCE) or the Na-K-2Cl cotransporter (NKCC1) terminates pacemaker activity in ICC, indicating these transporters are involved in the initiation or maintenance of pacemaker activity. We hypothesized that SOCE contributes to pacemaker depolarization by maintaining [Ca2+] in the endoplasmic reticulum, which is the underlying source of Ca2+ transients for activation of Ano1. NKCC1 maintains the Cl- gradient supporting the driving force for inward current mediated by Ano1. Currently mechanisms sustaining release of Ca2+ and activation of Ano1 channels during the plateau phase of slow waves are unknown, but the reverse mode of the Na+/Ca2+ exchange may contribute. We generated a mathematical model of pacemaker activity based on current empirical observations from ICC of mouse small intestine that incorporates functions of SOCE and NKCC1. This model reproduces experimental findings, suggesting roles for SOCE and Ano1 channels: blocking of either NKCC1 or SOCE in our model terminates pacemaker activity. Direct contribution of NKCC1 to pacemaker activity in a beat-to-beat manner is not predicted by our model. Instead, NKCC1 plays a maintenance role supporting the driving force for Cl- efflux. Incorporation of SOCE allows the model to drive pacemaker activity without a diastolic depolarization, as observed in cardiac pacemaking. Further biological experiments are necessary to validate and further refine the roles of NKCC1, Na+/Ca2+ exchange, and Ano1 in the pacemaker mechanism of ICC.


Assuntos
Relógios Biológicos , Sinalização do Cálcio , Células Intersticiais de Cajal/metabolismo , Modelos Neurológicos , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Potenciais de Ação , Animais , Cálcio/metabolismo , Humanos , Células Intersticiais de Cajal/fisiologia
11.
Pflugers Arch ; 470(2): 263-275, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29032504

RESUMO

Metabolic disturbance and mitochondrial dysfunction are a hallmark of diabetic cardiomyopathy (DC). Resistance exercise (RE) not only enhances the condition of healthy individuals but could also improve the status of those with disease. However, the beneficial effects of RE in the prevention of DC and mitochondrial dysfunction are uncertain. Therefore, this study investigated whether RE attenuates DC by improving mitochondrial function using an in vivo rat model of diabetes. Fourteen Otsuka Long-Evans Tokushima Fatty rats were assigned to sedentary control (SC, n = 7) and RE (n = 7) groups at 28 weeks of age. Long-Evans Tokushima Otsuka rats were used as the non-diabetic control. The RE rats were trained by 20 repetitions of climbing a ladder 5 days per week. RE rats exhibited higher glucose uptake and lower lipid profiles, indicating changes in energy metabolism. RE rats significantly increased the ejection fraction and fractional shortening compared with the SC rats. Isolated mitochondria in RE rats showed increase in mitochondrial numbers, which were accompanied by higher expression of mitochondrial biogenesis proteins such as proliferator-activated receptor-γ coactivator-1α and TFAM. Moreover, RE rats reduced proton leakage and reactive oxygen species production, with higher membrane potential. These results were accompanied by higher superoxide dismutase 2 and lower uncoupling protein 2 (UCP2) and UCP3 levels in RE rats. These data suggest that RE is effective at ameliorating DC by improving mitochondrial function, which may contribute to the maintenance of diabetic cardiac contractility.


Assuntos
Cardiomiopatias Diabéticas/prevenção & controle , Metabolismo Energético , Mitocôndrias Musculares/metabolismo , Contração Miocárdica , Condicionamento Físico Animal/métodos , Animais , Cardiomiopatias Diabéticas/fisiopatologia , Metabolismo dos Lipídeos , Masculino , Ratos , Ratos Long-Evans
12.
Sci Rep ; 7: 41840, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28165490

RESUMO

Isolating actively proliferating cardioblasts is the first crucial step for cardiac regeneration through cell implantation. However, the origin and identity of putative cardioblasts are still unclear. Here, we uncover a novel class of cardiac lineage cells, PDGFRα+Flk1- cardioblasts (PCBs), from mouse and human pluripotent stem cells induced using CsAYTE, a combination of the small molecules Cyclosporin A, the rho-associated coiled-coil kinase inhibitor Y27632, the antioxidant Trolox, and the ALK5 inhibitor EW7197. This novel population of actively proliferating cells is cardiac lineage-committed but in a morphologically and functionally immature state compared to mature cardiomyocytes. Most important, most of CsAYTE-induced PCBs spontaneously differentiated into functional αMHC+ cardiomyocytes (M+CMs) and could be a potential cellular resource for cardiac regeneration.


Assuntos
Diferenciação Celular , Mioblastos/citologia , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Amidas/farmacologia , Compostos de Anilina/farmacologia , Animais , Antioxidantes/farmacologia , Linhagem Celular , Células Cultivadas , Cromanos/farmacologia , Ciclosporina/farmacologia , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Mioblastos/metabolismo , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Piridinas/farmacologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Triazóis/farmacologia
13.
Pflugers Arch ; 468(11-12): 1995-2006, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27796576

RESUMO

Fatty acid (FA)-dependent oxidation is the predominant process for energy supply in normal heart. Impaired FA metabolism and metabolic insufficiency underlie the failing of the myocardium. So far, FA metabolism in normal cardiac physiology and heart failure remains undetermined. Here, we evaluate the mechanisms of FA and major metabolic substrates (termed NF) on the contraction, relaxation, and Ca2+ handling in rat left ventricular (LV) myocytes. Our results showed that NF significantly increased myocyte contraction and facilitated relaxation. Moreover, NF increased the amplitudes of diastolic and systolic Ca2+ transients ([Ca2+]i), abbreviated time constant of [Ca2+]i decay (tau), and prolonged the peak duration of [Ca2+]i. Whole-cell patch-clamp experiments revealed that NF increased Ca2+ influx via L-type Ca2+ channels (LTCC, ICa-integral) and prolonged the action potential duration (APD). Further analysis revealed that NF shifted the relaxation phase of sarcomere lengthening vs. [Ca2+]i trajectory to the right and increased [Ca2+]i for 50 % of sarcomere relengthening (EC50), suggesting myofilament Ca2+ desensitization. Butanedione monoxime (BDM), a myosin ATPase inhibitor that reduces myofilament Ca2+ sensitivity, abolished the NF-induced enhancement of [Ca2+]i amplitude and the tau of [Ca2+]i decay, indicating the association of myofilament Ca2+ desensitization with the changes in [Ca2+]i profile in NF. NF reduced intracellular pH ([pHi]). Increasing [pH]i buffer capacity with HCO3/CO2 attenuated Δ [pH]i and reversed myofilament Ca2+ desensitization and Ca2+ handling in NF. Collectively, greater Ca2+ influx through LTCCs and myofilament Ca2+ desensitization, via reducing [pH]i, are likely responsible for the positive inotropic and lusitropic effects of NF. Computer simulation recapitulated the effects of NF.


Assuntos
Sinalização do Cálcio , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Animais , Bicarbonatos/metabolismo , Canais de Cálcio Tipo L/metabolismo , Células Cultivadas , Ácidos Graxos/metabolismo , Ventrículos do Coração/citologia , Masculino , Miócitos Cardíacos/fisiologia , Ratos , Ratos Sprague-Dawley
14.
Exp Mol Med ; 48(8): e254, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27538372

RESUMO

Mitochondria are crucial for maintaining the properties of embryonic stem cells (ESCs) and for regulating their subsequent differentiation into diverse cell lineages, including cardiomyocytes. However, mitochondrial regulators that manage the rate of differentiation or cell fate have been rarely identified. This study aimed to determine the potential mitochondrial factor that controls the differentiation of ESCs into cardiac myocytes. We induced cardiomyocyte differentiation from mouse ESCs (mESCs) and performed microarray assays to assess messenger RNA (mRNA) expression changes at differentiation day 8 (D8) compared with undifferentiated mESCs (D0). Among the differentially expressed genes, Pdp1 expression was significantly decreased (27-fold) on D8 compared to D0, which was accompanied by suppressed mitochondrial indices, including ATP levels, membrane potential, ROS and mitochondrial Ca(2+). Notably, Pdp1 overexpression significantly enhanced the mitochondrial indices and pyruvate dehydrogenase activity and reduced the expression of cardiac differentiation marker mRNA and the cardiac differentiation rate compared to a mock control. In confirmation of this, a knockdown of the Pdp1 gene promoted the expression of cardiac differentiation marker mRNA and the cardiac differentiation rate. In conclusion, our results suggest that mitochondrial PDP1 is a potential regulator that controls cardiac differentiation at an early differentiation stage in ESCs.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias Murinas/citologia , Miócitos Cardíacos/citologia , Proteína Fosfatase 2C/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/metabolismo , Proteína Fosfatase 2C/genética , Espécies Reativas de Oxigênio/metabolismo
16.
Integr Med Res ; 5(1): 1-2, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28462090
17.
Integr Med Res ; 5(1): 3-10, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28462091

RESUMO

Embryonic stem cell-derived cardiomyocytes (ESC-CMs) hold great interest in many fields of research including clinical applications such as stem cell and gene therapy for cardiac repair or regeneration. ESC-CMs are also used as a platform tool for pharmacological tests or for investigations of cardiac remodeling. ESC-CMs have many different aspects of morphology, electrophysiology, calcium handling, and bioenergetics compared with adult cardiomyocytes. They are immature in morphology, similar to sinus nodal-like in the electrophysiology, higher contribution of trans-sarcolemmal Ca2+ influx to Ca2+ handling, and higher dependence on anaerobic glycolysis. Here, I review a detailed electrophysiology and Ca2+ handling features of ESC-CMs during differentiation into adult cardiomyocytes to gain insights into how all the developmental changes are related to each other to display cardinal features of developing cardiomyocytes.

18.
Pflugers Arch ; 468(4): 609-22, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26687128

RESUMO

Na(+)/Ca(2+) exchanger current (INCX) triggered by spontaneous Ca(2+) release from sarcoplasmic reticulum (SR) has been suggested as one of the cardiac pacemaker mechanisms ("Ca(2+) clock model"). In human embryonic stem cell-derived cardiomyocytes (hESC-CMs) showing spontaneous action potentials (APs), we found that substantial population (35 %) showed regular oscillation of inward currents (SICs) in nystatin-perforated voltage clamp between -40 and 40 mV (-80 ± 10.6 pA, at -20 mV). SICs were similarly observed between nodal, atrial, and ventricular hESC-CMs. Oscillations of [Ca(2+)]i synchronized with SICs were observed under voltage clamp. SICs were eliminated by lowering [Ca(2+)]e, L-type Ca(2+) channel (VOCCL) blocker (nifedipine, 10 µM), ryanodine receptor (RyR) agonist (caffeine, 10 mM), or NCX inhibitor (1 µM SN-6 and 10 µM KB-R7943). Plasma membrane expression of NCX1 was confirmed using immunofluorescence confocal microcopy. Both caffeine and SN-6 slowed the pacemaker potential but did not abolish the AP generation. The inhibitors of funny current (3 µM ivabradine) or voltage-gated K(+) channel currents (1 µM E4031 and 10 µM chromanol-293B) also did not abolish but slowed the pacemaker potential. In a computational model of cardiac pacemaker by Maltsev and Lakatta (2009), after modifying the spatial distribution of RyR, VOCCL, and NCX by using our multiparameter adjust algorithm, we could successfully reproduce spontaneous SR Ca(2+) release and SICs under voltage clamp. It was proposed that, under the membrane depolarization activating VOCCL, oscillatory Ca(2+) releases via RyR induce sharp increases in subsarcolemmal [Ca(2+)]i and inward INCX (SICs). Since the hESC-CMs without SICs still showed spontaneous APs, the putative "Ca(2+) clock" would provide a redundant pacemaker or augmenting mechanism in hESC-CMs.


Assuntos
Potenciais de Ação , Sinalização do Cálcio , Células-Tronco Embrionárias/citologia , Miócitos Cardíacos/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Diferenciação Celular , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Humanos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
19.
Cell Calcium ; 58(3): 264-74, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26115836

RESUMO

Neuronal nitric oxide synthase (nNOS) is important in cardiac protection in diseased heart. Recently, we have reported that nNOS is associated with myofilament Ca(2+) desensitization in cardiac myocytes from hypertensive rats. So far, the effect of myofilament Ca(2+) desensitization or nNOS on L-type Ca(2+) channel activity (I(Ca)) in cardiac myocyte is unclear. Here, we examined nNOS regulation of I(Ca) in left ventricular (LV) myocytes from sham and angiotensin II (Ang II)-induced hypertensive rats. Our results showed that basal I(Ca) was not different between sham and hypertension (from -60 to +40 mV, 0.1 Hz). S-methyl-L-thiocitrulline (SMTC), a selective nNOS inhibitor, increased peak I(Ca) similarly in both groups. However, chelation of intracellular Ca(2+) [Ca(2+)]i with BAPTA increased I(Ca) and abolished SMTC-augmentation of I(Ca) only in hypertension. Myofilament Ca(2+) desensitization with butanedione monoxime (BDM), a myosin ATPase inhibitor, decreased I(Ca) in both groups but to a greater extent in hypertension. Intracellular BAPTA or nNOS inhibition reinstated I(Ca) in the presence of BDM to the basal level, suggesting Ca(2+)-dependent inactivation of I(Ca) by nNOS and greater vulnerability in hypertension. Increasing stimulation frequencies (2, 4 and 8 Hz) attenuated myofilament Ca(2+) sensitivity in sham and reduced peak ICa in both groups. Nevertheless, SMTC or BAPTA exerted no effect on I(Ca) at high frequencies in either group. These results suggest that nNOS attenuates I(Ca) via Ca(2+)-dependent mechanism and the vulnerability is greater in hypertension subject to myofilament Ca(2+) desensitization. nNOS or [Ca(2+)]i does not affect I(Ca) at high stimulation frequencies. The results were recapitulated with computer simulation.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Sinalização do Cálcio , Hipertensão/metabolismo , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Animais , Canais de Cálcio , Ventrículos do Coração/metabolismo , Hipertensão/induzido quimicamente , Ratos , Ratos Sprague-Dawley
20.
Pflugers Arch ; 467(8): 1689-97, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25196539

RESUMO

Diabetes mellitus and hypertension are common diseases frequently coexisting. Although augmentation of L-type Ca(2+) channel (ICaL) activity has been reported in vascular smooth muscle cells (VSMCs) of a spontaneously hypertensive rat model, no study on ICaL has been conducted for coexisting hypertension and diabetes. Sprague Dawley rats were assigned to four groups: a sham-operated control group (CG), a unilateral nephrectomy group (UNG), a streptozotocin (STZ)-induced type 1 diabetic group (SDG) and a coexisting hypertension and diabetes group (DHG), which underwent nephrectomy and received STZ injection. Blood pressure (BP) was significantly lower in the CG than in the other three groups. The membrane capacitance of VSMCs was nearly doubled in the SDG and DHG but not in the UNG. The ICaL was increased approximately 2-fold in both the UNG and SDG and approximately 4-fold in the DHG. The current density of ICaL was increased approximately 2-fold in the UNG and DHG, while no significant increase was seen in the SDG. The rate of Ca(2+) removal was inhibited significantly, by ~33 %, in the DHG. In conclusion, the effects of hypertension and diabetes on ICaL were apparently additive, and the vascular consequences of combined diabetes and hypertension may be caused by an elevated ICaL and slowed Ca(2+) removal.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Hipertensão/metabolismo , Mesentério/irrigação sanguínea , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Nefrectomia , Estreptozocina , Animais , Arteríolas/metabolismo , Pressão Sanguínea , Cálcio/metabolismo , Sinalização do Cálcio , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/fisiopatologia , Hipertensão/etiologia , Hipertensão/fisiopatologia , Potenciais da Membrana , Músculo Liso Vascular/fisiopatologia , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA